Sylomer_® 450 Werkstoffdatenblatt

Werkstoff gemischtzelliges PUR-Elastomer

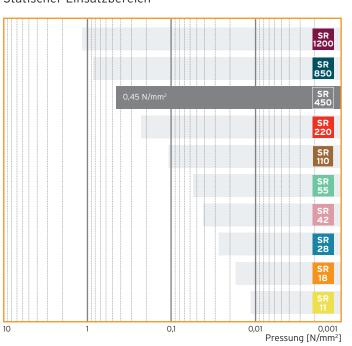
(Polyetherurethan)

Farbe grau

Standard-Lieferformen, ab Lager

Dicke: 12,5 mm bei Sylomer® SR 450 - 12

25 mm bei Sylomer® SR 450 - 25


Rollen: 1,5 m breit, 5,0 m lang

Streifen: bis 1,5 m breit, bis 5,0 m lang

Andere Abmessungen (auch Dicke), sowie Stanzteile, Formteile auf Anfrage

Einsatzbereich	Druckbelastung	Verformung
	formfaktorabhängig, die angegebenen Werte gelten für Formfaktor q=3	
Statischer Einsatzbereich (statische Lasten)	bis 0,45 N/mm²	ca. 10 %
Dynamikbereich (statische und dynamische Lasten)	bis 0,7 N/mm²	ca. 20 %
Lastspitzen (seltene, kurzzeitige Lasten)	bis 5 N/mm²	ca. 70 %

Sylomer® **Typenreihe** Statischer Einsatzbereich

Werkstoffeigenschaften		Prüfverfahren	Anmerkung
Mechanischer Verlustfaktor	η = 0,11	DIN 53513*	frequenz-, last- und amplitudenabhängig
Rückprallelastizität	60 %	DIN 53573	
Druckverformungsrest	< 5 %	EN ISO 1856	50 % Verformung, 23 °C, 70 h, 30 min nach Entlastung
Statischer Schubmodul	0,58 N/mm ²	DIN ISO 1827*	bei einer Vorspannung von 0,45 N/mm²
Dynamischer Schubmodul	1,0 N/mm²	DIN ISO 1827*	bei einer Vorspannung von 0,45 N/mm², 10 Hz
Reibwert (Stahl)	μ _s = 0,5	Getzner Werkstoffe	trocken
Reibwert (Beton)	μ _в = 0,7	Getzner Werkstoffe	trocken
Abrieb	400 mm ³	DIN 53516	Last 10 N, Unterhaut
Einsatztemperatur	-30 bis 70 °C		kurzzeitig höhere Temperaturen möglich
Spezifischer Durchgangswiderstand	> 10 ¹¹ Ω·cm	DIN IEC 93	trocken
Wärmeleitfähigkeit	0,1 W/(mK)	DIN 52612/1	
Brandverhalten	B2 B, C und D	DIN 4102 EN ISO 11925-2	normal entflammbar bestanden

^{*} Messung in Anlehnung an die jeweilige Norm

Alle Angaben und Daten beruhen auf unserem derzeitigen Wissensstand. Sie können als Rechen-bzw. Richtwerte herangezogen werden, unterliegen üblichen Fertigungstoleranzen und stellen keine zugesicherten Eigenschaften dar. Änderungen vorbehalten.

Weitere allgemeine Informationen siehe VDI Richtlinie 2062 sowie Glossar. Weitere Kennwerte auf Anfrage.

www.getzner.com

1

Sylomer_® sr 450

Federkennlinie

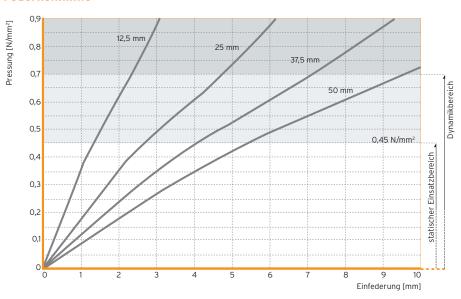


Abb. 1: Quasistatische Federkennlinie mit einer Belastungsgeschwindigkeit von 0,045 N/mm²/s

Prüfung zwischen ebenen und planparallelen Stahlplatten, Aufzeichnung der 3. Belastung, Prüfung bei Raumtemperatur

Formfaktor q=3

Elastizitätsmodul

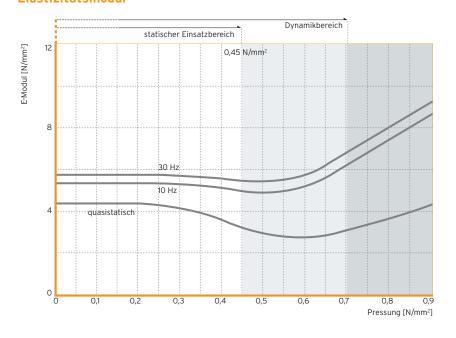


Abb. 2: Belastungsabhängigkeit der statischen und dynamischen E-Moduli

Quasistatischer E-Modul als Tangentenmodul aus der Federkennlinie. Dynamischer E-Modul aus sinusförmiger Anregung mit einer Schwingschnelle von 100 dBv re. 5 · 10-8 m/s (entsprechend einer Schwingweite von 0,22 mm bei 10 Hz und 0,08 mm bei 30 Hz)

Messung in Anlehnung an DIN 53513

Formfaktor q=3

www.getzner.com

Eigenfrequenzen

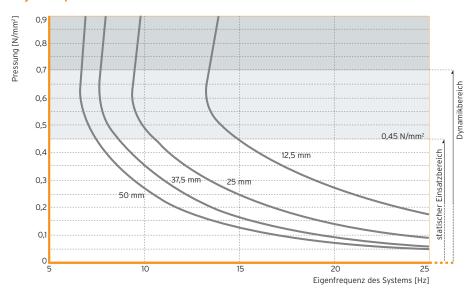


Abb. 3: Eigenfrequenzen eines schwingungsfähigen Systems mit einem Freiheitsgrad, bestehend aus einer starren Masse und einem elastischen Lager aus Sylomer® SR 450 auf starrem Untergrund

Parameter: Dicke des Sylomerlagers

Formfaktor q=3

Schwingungsisolation

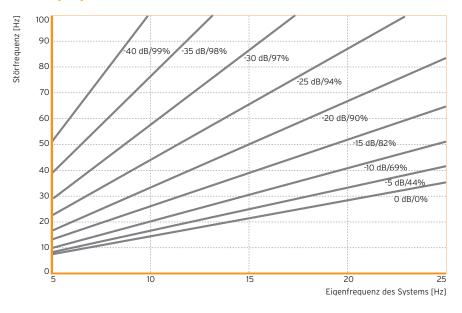


Abb. 4: Verminderung der Übertragung mechanischer Schwingungen durch den Einbau einer elastischen Lagerung aus Sylomer® SR 450 auf starrem Untergrund

Parameter: Übertragungsmaβ in dB, Isolierwirkungsgrad in Prozent

Einfluss des Formfaktors

Die Diagramme geben Korrekturwerte bei unterschiedlichen Formfaktoren an.

Abb. 5: Statischer Einsatzbereich

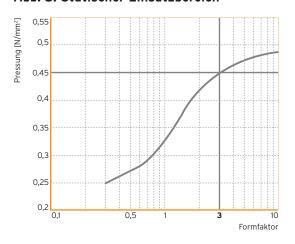


Abb. 6: Einfederung*

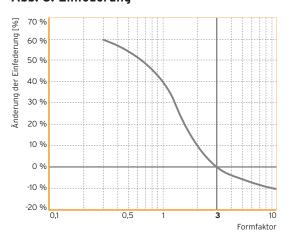
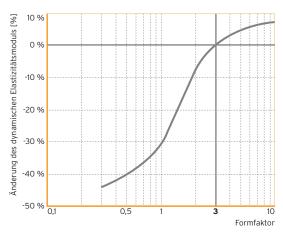



Abb. 7: Dynamischer Elastizitätsmodul bei 10 Hz*

*Referenzwerte: Pressung 0,45 N/mm², Formfaktor q=3

Abb. 8: Eigenfrequenzen*

